«Аэрофлот» оптимизировал полноту использования грузопочтовой квоты на пассажирских рейсах с помощью Cargo Air

Интеграция Бизнес-приложения Внедрения Big Data

«Иннодата» завершила проект по созданию автоматизированной системы прогнозирования грузопочтовых емкостей пассажирских рейсов для «Аэрофлота».

В июле 2019 г. в «Аэрофлот» была поставлена задача оптимизировать коммерческую загрузку рейсов. Для ее решения было необходимо оптимизировать полноту использования грузопочтовой квоты пассажирских рейсов и повысить точность прогнозирования емкостей загрузки.

Эксперты компании «Иннодата», которых привлекли на реализацию проекта, проанализировали массив исторических данных по рейсам и большой объем неструктурированных данных по загрузке воздушных судов. Затем были определены метрики, по которым произведена оценка эффективности прогнозов. Результаты аналитики позволили специалистам разработать методику и критерии оценки испытаний, включая оценку качества прогнозов. Процесс исследования происходил с применением технологий машинного обучения на базе программного обеспечения Big Data (Hive, Spark ML).

«Для прогнозирования грузопочтовых емкостей пассажирских рейсов зачастую необходимо использовать информацию о рейсах, по которым нет исторических данных для обучения моделей прогнозирования, – сказал Александр Сергиенко, исполнительный директор компании "Иннодата". – Однако проектная команда спроектировала ядро системы таким образом, что она способна обрабатывать не только такую незафиксированную ранее информацию, но и учитывать данные о загрузке рейса, количестве пассажиров, уровне топлива. Кроме того, система реагирует на изменения в расписании, замену типов воздушных судов и другие важные факторы».

Кроме работы с большими неструктурированными данными, реализация проекта осложнялась необходимостью расшифровывать специальные CPM- и LDM- телеграммы, которые формируются при подготовке судна к вылету. Это данные о загрузке самолета по всему маршруту и о загрузке грузовых отсеков. Поскольку составляются они вручную, то часто содержат ошибки и могут иметь несколько несовпадающих версий.

Разработчики консолидировали исторические данные, построили самообучаемые модели прогнозирования, создали функционал, способный настраивать и оптимизировать алгоритмы работы системы, и, как следствие, обеспечили «Аэрофлот» инструментом для точного прогнозирования грузопочтовой квоты.

«В результате внедрения автоматизированной системы прогнозирования грузопочтовых емкостей пассажирских рейсов Сargo Air в "Аэрофлоте" точность прогнозных значений загрузки воздушных судов за шесть месяцев увеличилась на 20%, а точность прогнозирования доступной свободной грузовой квоты выросла до 90%, – сказал Кирилл Богданов, заместитель генерального директора по информационным технологиям "Аэрофлота". – Это позволило нам существенно оптимизировать коммерческую загрузку рейсов в целом в масштабах всей группы».


Крупнейшие поставщики BI-решений в России 2017

№ 2016 Название организации Выручка по направлению BI с НДС в 2016 г., ₽тыс. Рост 2016/2015
1 Softline 1 661 471 14,2%
2 GlowByte Consulting 1 450 000 27,1%
3 AT Consulting 1 408 954 4,3%
4 Крок 1 308 708 22,9%
5 Сапран * 590 000 29,9%

смотреть полный рейтиг